skip to main content


Search for: All records

Creators/Authors contains: "Stahl, Shannon S."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. This tutorial review explains the use of cyclic voltammetry and chronoamperometry to interrogate reaction mechanisms, optimize electrochemical reactions, or design new reactions. 
    more » « less
    Free, publicly-accessible full text available January 1, 2025
  2. Free, publicly-accessible full text available August 16, 2024
  3. Free, publicly-accessible full text available November 2, 2024
  4. Palladium(II) catalysts promote oxidative dehydrogenation and dehydrogenative coupling of many organic molecules. Oxidations of alcohols to aldehydes or ketones are prominent examples. Hydroquinone (H2Q) oxidation to benzoquinone (BQ) is conceptually related to alcohol oxidation, but it is significantly more challenging thermodynamically. The BQ/H2Q redox potential is sufficiently high that BQ is often used as an oxidant in Pd-catalyzed oxidation reactions. A recent report (J. Am. Chem. Soc.2020, 142, 19678–19688) showed that certain ancillary ligands can raise the PdII/0 redox potential sufficiently to reverse this reactivity, enabling (L)PdII(OAc)2 to oxidize hydroquinone to benzoquinone. Here, we investigate the oxidation of tert-butylhydroquinone (tBuH2Q) and 4-fluorobenzyl alcohol (4FBnOH), mediated by (bc)Pd(OAc)2 (bc = bathocuproine). Although alcohol oxidation is thermodynamically favored over H2Q oxidation by more than 400 mV, the oxidation of tBuH2Q proceeds several orders of magnitude faster than 4FBnOH oxidation. Kinetic and mechanistic studies reveal that these reactions feature different rate-limiting steps. Alcohol oxidation proceeds via rate-limiting β-hydride elimination from a PdII-alkoxide intermediate, while H2Q oxidation features rate-limiting isomerization from an O-to-C-bound PdII-hydroquinonate species. The enhanced rate of H2Q oxidation reflects the kinetic facility of O–H relative to C–H bond cleavage. 
    more » « less
  5. null (Ed.)
    Pd-catalyzed C–H arylation of heteorarenes is an important and widely studied synthetic transformation; however, the regioselectivity is often substrate-controlled. Here, we report catalyst-controlled regioselectivity in the Pd-catalyzed oxidative coupling of N-(phenylsulfonyl)indoles and aryl boronic acids using O2 as the oxidant. Both C2- and C3-arylated indoles are obtained in good yield with >10:1 selectivity. A switch from C2 to C3 regioselectivity is achieved by including 4,5-diazafluoren-9-one or 2,2'-bipyrimidine as an ancillary ligand to a "ligand-free" Pd(OTs)2 catalyst system. Density functional theory calculations indicate that the switch in selectivity arises from a change in the mechanism, from a C2-selective oxidative-Heck pathway to a C3-selective C–H activation/reductive elimination pathway. 
    more » « less
  6. null (Ed.)
  7. null (Ed.)
    Here, we show that C 4 –C 12 linear olefins, including linear alpha olefins, can be selectively produced from ethylene over a stable cobalt oxide on carbon catalyst. Both bulk and surface cobalt phases are CoO when the catalyst is stable, suggesting CoO is the stable cobalt phase for oligomerization. During the reaction, polyethylene forms in the catalyst pores which influences the product selectivity. The catalyst is more stable at higher temperatures (∼200 °C) likely due to reduction of Co 3 O 4 to CoO while rapid deactivation is observed at lower temperatures ( e.g. , 80–140 °C). The product selectivity can be fit to two different Schulz Flory distributions, one from C 4 to C 10 olefins and one above C 10 olefins, suggesting that transport restrictions influence product selectivity. At 48.3% conversion, product linearities up to C 12 olefins are above 90%, making it the most selective heterogeneous catalyst to linear olefins to date in the absence of activators and/or solvents. 
    more » « less
  8. null (Ed.)
    Redox reactions are ubiquitous in organic synthesis and intrinsic to organic electrosynthesis. The language and concepts used to describe reactions in these domains are sufficiently different to create barriers that hinder broader adoption and understanding of electrochemical methods. To bridge these gaps, this Synopsis compares chemical and electrochemical redox reactions, including concepts of free energy, voltage, kinetic barriers, and overpotential. This discussion is intended to increase the accessibility of electrochemistry for organic chemists lacking formal training in this area. 
    more » « less
  9. null (Ed.)